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ARTICLE INFO ABSTRACT

Keywords: Objectives: Observer-based measures of shared decision rely on human raters, it is resource-intensive, limiting
Generative Al routine assessment and improvement. Generative artificial intelligence could increase the speed and accuracy of
g;l\';[ observer-based evaluation while reducing the burden. This study aimed to assess the performance of large

language models (LLMs) from Gemini, GPT, and LLaMA family of models in evaluating the extent of shared
decision-making between clinicians and women considering surgery for early-stage breast cancer.

Methods: LLM-generated scores were compared with those of trained human raters from a randomized controlled
trial using the 5-item Observer OPTION-5 measure. We analyzed 287 anonymized transcripts of breast cancer
consultations. A series of prompts were tested across models, assessing correlations with human scores. We also
evaluated the ability of LLMs to distinguish high versus low encounters and the impact of inter-rater agreement
on performance.’

Results: The scores for Observer OPTION-5 items generated by the GPT-40 and Gemini-1.5-Pro-002 correlated
with human ratings (Pearson r ~ 0.6, p-value<0.01), representing ~ 75-80 % of the correlation observed be-
tween human raters themselves (r = 0.77). Providing detailed descriptions and examples improved the models’
performance. The results also confirm that the models could distinguish high- from low-scoring encounters, with
an independent-samples t-test showing a large and significant separation between the two groups (t> 10,
p<0.01).

Conclusions: Based on the breast cancer surgery dataset we explored, LLMs can evaluate aspects of clinician-
patient dialog using existing measures, providing the basis for the development and fine-tuning of prompts.
Future work should focus on generalizability, larger datasets, and improving model performance.

Practice implications: The prospect of being able to automate the assessment of shared decision-making opens the
door to rapid feedback as a means for reflective practice improvement.

Option talk
Shared decision-making

1. Introduction

Shared decision-making (SDM) is a collaborative process where cli-
nicians and patients share information and deliberate treatment options.
SDM improves patient knowledge, lowers costs, and enhances outcomes
[1-4]. US policy initiatives like the Merit-based Incentive Payment
System (MIPS), Medicare Access and CHIP Reauthorization Act of 2015
(MACRA), and the Centers for Medicare and Medicaid support and
incentivize SDM [5]. Similarly, the UK National Health Service (NHS)
has embedded SDM into its care strategy [6], Canada established

pan-Canadian initiatives through the Health Canada SDM frameworks
[71, and the Netherlands has made SDM a cornerstone of oncology and
chronic care guidelines [8]. However, there is agreement that mea-
surement methods must be improved [9].

Patient-reported experience measures exist [10,11] but are biased,
have low response rates, and are not widely implemented [9,12,13].
Observer-based measures (OMs), such as Observer OPTION-5 (005),
provide more reliable assessments by analyzing recorded clin-
ician—patient interactions and are not based on patients’ memory as in
patient-reported experience measures [10]. OMs also typically reveal
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lower SDM levels and significant differences in performance between
clinicians [10]. However, OMs are resource-intensive, limiting their use
to research [11,12]. Automating dialogue assessment has been sug-
gested as a way to provide rapid feedback [14-18].

Observer OPTION-5 (005), a validated 5-item tool based on the
collaborative deliberation model [13], demonstrated good validity in
prior research [12,19-23], typically requires two independent raters.
Advancements in natural language processing (the field of computer
science focused on automated understanding and processing of human
language) and artificial intelligence (AI) offer opportunities to automate
SDM assessment, reducing training burdens and costs, enabling
large-scale research and clinical trial use, and potentially offering
practitioners direct feedback [16-18].

Large Language Models (LLMs-AlI systems trained on vast text
corpora that can generate and interpret languages) have redefined Al
benchmarks, and are increasingly applied in healthcare (diagnostics,
decision support, literature interpretation) [24-31]. They show emer-
gent abilities, such as extracting nuanced information from clinical
notes, highlighting their potential in healthcare [28,31,32].

OpenAl's GPT-3.5 and GPT-4 and Google’s PaLM2 rank among the
top-performing models in language understanding and generation [33,
34]. These LLMs enable zero-shot learning (i.e., requiring no additional
training data or examples) [31,35] and few-shot learning (where
providing only limited examples can enhance task performance) [24,30,
36-41]. These LLMs are therefore particularly useful when labeled
training data is scarce or impractical to collect even in production sys-
tems [29-31,37,41,42].

While other models like BERT [43-45] (a widely used neural
network architecture for language understanding) are used in medical
text classification and generation [42,46,47], we opted for LLMs due to
limited training data availability. Publicly available LLM models like
LLaMA [48] and Mistral [49] were not considered, as their zero- and
few-shot performance lagged behind the commercial LLMs used in this
study.

Given the rapid advancements in LLM capabilities, our primary goal
is to assess their potential for automatically rating clinical conversations
using Observer OPTION-5 (OO5). We achieve this by using an LLM to
detect specific speech acts in clinical transcripts and comparing their
performance to human raters who previously used the OO5 measure to
assess the same data.
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2. Methods
2.1. Design

We conducted secondary analyses of an existing corpus of anony-
mized transcripts from audio recordings of conversations between breast
surgeons and patients about treatment for early-stage breast cancer.
Anonymization was done in three rounds: (1) the transcription company
tagged patient-identifiable information using brackets (e.g., “You must
be [Angela].”), (2) A trained staff member removed all bracketed con-
tent and reviewed each transcript for other identifiers, including clini-
cian information, and (3) another staff member verified the removal of
all identifiers.

This work builds on a prior proof-of-concept study where we
developed an automated rating process for the first item of the Observer
OPTION-5 measure [16]. We show all five items of the measure in Box 1.
These secondary analyses were reviewed and approved by the Dart-
mouth College Institutional Review Board (STUDY00030157).

We used transcripts from a randomized trial conducted in four cancer
centers. [50] The trial compared versions of a conversation aid for
surgical decision making in early-stage breast cancer. Surgeons in the
intervention arms were trained to use the Option Grid tool, which
compared breast-conserving surgery with radiation versus mastectomy.
Other therapies were sometimes discussed, including chemotherapy,
radiation, and genetic testing. Patients already knew their breast cancer
diagnosis before the appointment. We excluded encounters with in-
terpreters for non-English communication to avoid added complexity.

2.2. Transcript preparation and scoring with OO5

We used spaCy to split speaker turns into individual line segments
based on transcription punctuation. Two independent human raters,
formally trained in Observer OPTION-5 (OO5), scored each encounter
by listening to recordings and rating items 1-5 on a 0—4 scale (0 =no
evidence, 4 =highest achievement) [19].

The transcripts were divided into contiguous segments of 120 lines.
Each segment and its line numbers were input to the LLM, which
generated scores for relevant OO5 items. We used 120-line segments
because LLMs have limited input lengths and performance declines with
longer inputs [51]. Segment-level predictions were aggregated into
encounter-level scores. The LLM was prompted to score transcripts (and
identify the corresponding line numbers) and identify corresponding
line numbers using these rules:

Box 1
Items of the Observer OPTION-5 Measure [19].
Item Statement Description

1 Decision awareness: For the health issue being discussed, the clinician draws attention to or confirms that alternate treatment or
management options exist or that the need for a decision exists. If the patient, rather than the clinician, draws attention to the
availability of options, the clinician responds by agreeing that the options need deliberation.

2 Team talk: The clinician reassures the patient or reaffirms that the clinician will support the patient to become informed or
deliberate about the options. If the patient states that they have sought or obtained information prior to the encounter, the clinician
supports such a deliberation process.

3 Option talk: The clinician gives information or checks understanding about the options that are considered reasonable (this can
include taking no action), to support the patient in comparing alternatives. If the patient requests clarification, the clinician supports
the process.

4 Preference elicitation: The clinician makes an effort to elicit the patient’s preferences in response to the options that have been
described. If the patient declares their preference(s), the clinician is supportive

5 Decision talk: The clinician makes an effort to integrate the patient’s elicited preferences as decisions are made. If the patient
indicates how best to integrate their preferences as decisions are made, the clinician makes an effort to do so.
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1. If all lines scored O—transcript item score= 0
2. If any non-zero—transcript item score=average of non-zero scores.

For item-level scores overall and by clinician, we averaged the two
rater scores and computed summed averages. Clinician-level scores were
calculated by averaging the summed OO5 scores across encounters.
Inter-rater agreement was assessed using overall and item-level corre-
lations. Following OO5 conventions, LLM outputs (0-4) were rescaled to
0-20; combined item scores therefore ranged 0-100.

To generate item-level scores overall and by clinician, we first
averaged the two rater scores, and we computed the summed average
score. Similarly, we computed clinician-level scores by averaging the
summed OO5 item scores for their encounters. To assess agreement
between the two independent raters, we performed overall and item-
level correlation analyses. Following OO5 scoring conventions, we
rescaled the LLM output for each item score from 0 to 4-0-20. Thus,
when combining the scores of the five OO5 items, we get a score range of
0-100, which we use in this article. Transcript scores were calculated as
the sum of averaged item scores, and clinician-level scores as the
average of their encounter-level sums.

For model development and evaluation, we randomly split the
dataset into a validation set and a test set. The validation set (n =40
encounters) was used to iteratively design and optimize prompts,
allowing us to compare alternative prompt formulations and select the
best-performing one. The remaining transcripts (n =247 encounters)
formed the held-out test set, which was used exclusively for the final
evaluation of model performance. This separation ensured that the test
results reflect out-of-sample performance, independent of the data used
for prompt optimization.

2.3. Comparisons of LLM OO5 score prediction

We defined the task for the LLMs as the identification and scoring of
clinician utterances in the clinical encounter transcripts that correspond
to item statements in the OO5 manual. We compared how well LLMs
from open-source and closed-source families performed this task and
selected the following LLMs: Meta’s LLAMA series, OpenAI’s GPT series,
and Google’s Gemini series. During these evaluations, we selected pri-
vacy settings for the API provider so that the LLMs did not log or store
any part of the data.

2.3.1. The design and optimization of prompts for the LLMs

Prompts for these models were designed to optimize the LLM’s per-
formance, and compared how well the scores correlated with OO5 scores
provided by human raters. An LLM prompt typically has three parts, see
Box 2.

The outline of our prompts can be seen in Appendix Table 1. We
described the clinical setting of the encounter transcripts and described
the task objective, namely, to find and score instances in the transcripts
of 005 items. The prompts also contained detailed descriptions of each
005 item, supplemented by example phrases and/or statements illus-
trating the scoring spectrum. Instructions for scoring and formatting the
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output were included to ensure a consistent, uniform output format.
Depending on the comparative design, we instructed the LLMs to iden-
tify and score relevant phrases/statements for each item or all-items
simultaneously. Given our focus on assessing surgeons’ communica-
tion about breast cancer surgery, the LLMs were instructed to exclude
unrelated dialogue. Additionally, the LLMs were instructed to explain
their scoring decisions because there is evidence that this strategy en-
hances performance [52]. Similarly, we also included examples of the
task (taken from the OO5 User Manual, Appendix Table 1). We evalu-
ated multiple prompts and models on the validation set to identify the
best-performing configurations (see Box 3):

2.3.2. Analysis of the LLM performance/statistical analysis to differentiate
performance

We evaluated the correlations between LLM-generated scores and
the human rater scores at the level of 005 items, the sum of OO5 items
for each encounter, and at the OO5 score level for each clinician (the
mean of their encounter OO5 scores).

To contextualize LLM performance, we also measured the level of the
two raters’ agreement by computing Pearson (rp) and intraclass corre-
lation (ICC) level scores. The best-performing prompt from the prompt
optimization step on GPT-40 was selected for further evaluation on the
test set with other LLMs. We report r, and ICCs, consistent with prior
OPTION-5 studies, to assess consistency and absolute agreement on
continuous ratings.

Prior research has shown that inter-rater reliability in OPTION-5
scoring is modest, with ICC values often in the 0.6-0.7 range [19,53].
Similar levels of reliability (0.5-0.6) have also been reported in broader
health conversation coding tasks [54,55]. Because the average of two
human raters was used as the reference standard in our study, the
maximum achievable correlation for any model is naturally constrained
by the agreement between those raters. In this context, we interpret
model-human correlations that achieve at least 70-80% of the
measured human-human agreement as strong evidence of alignment.

We examined the LLM’s ability to distinguish between high- and low-
performing conversations by dividing the test set into two groups:

1. Low-Performing SDM Encounter: Where OO5 sum scores < 50.
2. High-Performing SDM Encounters: Where OO5 sum scores > 50.

This threshold was chosen a priori based on OPTION-5 guidance and
prior validation studies, which conceptualize the midpoint of the scale
(50/100) as distinguishing minimal from more consistent evidence of
shared decision-making behaviors [12,19,23]. We therefore defined
high/low groups using this interpretive benchmark rather than
dataset-derived values such as the mean or median.

Clinician-level segregation was evaluated to determine whether
LLMs could distinguish between high- and low-performing clinicians
based on their average OO5 conversation scores. To assess this, we used
an independent-samples t-test, which evaluates whether the means of
two groups differ more than would be expected by chance. In our case,
the two groups were high versus low-performing encounters (OO5 > 50

Box 2
Standard LLM Prompt Design.

Part Description
i) A task description, with optional provision of detailed examples that provide details for scoring.
ii) Data input

iii) Statements that elicit the required results or prediction, e.g., “Output predictions:”
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Box 3
Evaluation Using Multiple Prompt Versions.

HWN -

. Baseline: The task description only used definitions of each OO5 item.

. Detailed Descriptions: The task description, in addition to definitions, included granular examples for each score in the OO5 items.

. Simultaneous Prediction: The LLM was instructed to predict scores for all OO5 items simultaneously.

. Catch-All Category Addition: Introducing a category for good communication practices not covered by OO5 or related to breast surgery,
e.g., the clinician greeting the patient or covering OO5 items related to post-surgery treatments.

vs. < 50). The t-statistic quantifies the size of the difference relative to
the variability within each group, with higher values indicating greater
separation. We also explored grouping the 12 clinicians into high- and
low-performing categories based on their summed OOS5 scores.

2.3.3. Trend analysis of LLM performance and human-rater agreement
For this analysis, the test set was divided into two subsets based on
rater agreement on the OO5 sum scores:

e High Rater Agreement Test Set: Encounter scores where the dif-
ference between the two rater OO5 scores was < 10.

e Low Rater Agreement Test Set: Encounter scores where the dif-
ference between the two rater OO5 scores was greater than 10.

We used these subsets to assess whether the level of human-rater
agreement affected the LLM performance and visualized the difference
between LLM 005 Scores and Human Rater Scores vs the difference
between the human rater scores.

Although we report multiple statistical comparisons (e.g., encounter-
level, clinician-level, item-level, and subgroup analyses), these are all
derived from a single fixed set of predictions per model generated on the
test set after prompt optimization. In total, only six model outputs were
evaluated, and the various analyses represent different perspectives on
these same outputs rather than independent hypothesis tests. This
design reduces the risk of Type I error inflation typically associated with
multiple testing. Nevertheless, we interpret the findings as exploratory
and emphasize the importance of consistent patterns across analyses
rather than isolated p-values.

3. Results
3.1. Available transcripts

Our final set of encounter transcripts included 110 collected at center
1, 46 collected at center 2, 8 collected at center 3, and 123 collected at
center 4 — a total of 287 conversations with 12 surgeons. We used a
random number generator to select 40 transcripts to create a validation
set of encounters. The remaining 247 conversations formed the test set
of encounters. The conversations were transcribed as separate speaker
turns. On average, each encounter transcript contained 488 lines
(standard deviation of 334), with the longest transcript containing 1675.
The mean human-rater summed OOS5 score across the encounter tran-
scripts was 54.15 (standard deviation = 25.77). Slightly less than a third
(30 %) of the transcripts had an average OO5 sum score of 25 or lower,
while 35 % had an average sum score of 75 or higher. For more detailed
statistics, refer to Appendix Table 2. The levels of agreement between
human raters were moderate to high, as shown by the correlation in
Table 1. As expected, correlations for the overall sum score were higher
than for individual items, reflecting the increased reliability of com-
posite scores that aggregate across items. Because model-human cor-
relations are bounded by the level of agreement between the two human
raters (r =0.77), we interpret performance relative to this ceiling. For

reference, correlations of 0.54, 0.62, and 0.69 correspond to 70 %, 80 %,
and 90 % of the human-human agreement, respectively. These thresh-
olds provide context for evaluating the strength of model-human cor-
relations reported below.

3.2. The optimization of prompts for the LLMs

The results of the prompt optimization experiments on the validation
set (40 transcripts) using GPT-40 are summarized in Table 2. Prompts
that included only the item’s definitions performed poorly, yielding a
low and non-significant correlation (r = 0.22, p = 0.17) when predicting
one item at a time and (r = 0.46, p < 0.01) when predicting all five 005
items simultaneously. Incorporating detailed descriptions and granular
scoring examples in addition to the task description for each item of 005
improved performance significantly, with correlations increasing to
0.45 (p < 0.01) for predicting one-item at a time and 0.50 (p < 0.01) for
predicting all items simultaneously. Refer to Appendix Table 1 for the
complete prompt with the task description, detailed description, and
scoring examples.

The addition of the Catch-All Category (see Box 3) reduced false-
positive errors, but had a negative impact on LLM performance. Sensi-
tivity analysis on the addition of the Catch-All Category shows that the
LLMs often misclassified instances of the five items into the catch-all
category (in both cases of predicting for one item at a time and all
items simultaneously). Sensitivity analysis on comparing predicting
single items versus all items simultaneously shows that, when predicting
one item at a time, the model frequently misclassifies instances of the
other four items as positive for the predicted item; these errors are

Table 1
Correlations between two human raters (N = 287 encounters).

Rater Correlation (Pearson 1p) Rater Correlation (ICC)

Item 1 0.54 0.44

Item 2 0.53 0.34

Item 3 0.81 0.74

Item 4 0.73 0.61

Item 5 0.69 0.54

Overall Sum Score  0.77 0.77
Table 2

Correlation between LLM-predicted (GPT-40) OO5 scores and mean Rater Scores
(Validation dataset of randomly selected 40 transcripts).

Experiment Pearson P-
Correlation (rp) value

Predicting one item at-a-time 0.22 0.17

Predicting one item at-a-time + Detailed 0.45 <0.01
description

Predicting all-items at once 0.46 <0.01

Predicting all-items at once + Detailed 0.50 <0.01
description

Predicting all-items at once + Detailed 0.32 0.039

description + Catch-all category
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lowered when predicting all items simultaneously.

From the prompt optimization on the evaluation set, we find that
predicting all five items simultaneously with detailed descriptions and
examples performed best (Appendix Table 1). We used this ‘best” prompt
to test across different LLMs and conduct further analysis in the rest of
the paper.

3.3. Analysis of LLM performance

In Table 3, we show the all-item encounter-level Pearson correlations
of different LLMs on the test dataset with the optimized prompts. The
top-performing models were Gemini-1.5-Pro-002 and GPT-4o, achieving
1p of 0.59 and 0.64, respectively. Given that the ceiling for model-hu-
man agreement is bounded by the observed human-human correlation
(rp=0.77), these results correspond to 77 % (Gemini-1.5-Pro-002) and
83 % (GPT-40) of the maximum possible agreement. Both, therefore,
meet our pre-specified threshold of strong performance (>70 % of the
ceiling). At the clinician level, Gemini-1.5-Pro-002 recorded a r,= 0.88,
and GPT-4o recorded a correlation of 0.75. Both results were statistically
significant. Other models, including those from the LLAMA family,
exhibited lower correlations (r,=0.21), and their results were not sta-
tistically significant.

3.3.1. Stratification by high and low OO5 scores, encounter and clinician
levels

The t-test results for distinguishing High and Low-Performing SDM
encounters (OO5 scores greater than 50/100 from encounters scoring
lower than 50/100 are shown in Table 4. The best-performing models
from Table 3, Gemini-1.5-Pro-002 and GPT-40, recorded t-test statistics
of 9.0 (p<0.01) and 10.05 (p =0.039), respectively. These results
reflect a statistically significant and strong difference between the pre-
dicted scores of high- and low-performing conversations. Despite the
limited number of clinicians, Gemini-1.5-Pro-002 and GPT-40 recorded
moderate t-test values of 4.0 (p < 0.01) and 2.7 (p = 0.02), respectively
(Table 4). For other low-performing LLM models, clinician-level segre-
gation results were not statistically significant, so we are not including
the results here.

3.3.2. Item-level scores: correlation between LLM and human rater OO5
scores

Table 5 shows the item-level correlation for Gemini-1.5-Pro-002 and
GPT-4o. Items 4 and 5 showed a high correlation with rater scores for
both models (Gemini-1.5-Pro-002: ~0.6, GPT-40: ~0.5). Conversely,
item 1 demonstrated the lowest correlation, with values of ~0.15 for
both models.

Table 3
Correlation between LLM-predicted scores and mean human rater scores (Test
dataset of 247 encounters).

Comparisons Encounter level

Pearson Correlation r, P-value
GPT—40 0.64 <0.01
Gemini—1.5-Pro—002 0.59 <0.01
Llama 405b 0.40 0.018
LLama 70b 0.33 <0.01
Gemini—1.5-flash—001 0.32 <0.01
Gpt—4o0-mini 0.196 <0.01
Comparisons Clinician level

Pearson Correlation 1, P-value
Gemini—1.5-Pro—002 0.88 <0.01
GPT—40 0.75 <0.01
LLama 70b 0.46 0.128
Llama 405b 0.44 0.279
Gemini—1.5-flash—001 0.36 0.256
Gpt—4o0-mini 0.31 0.327
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Table 4
Evaluating the ability of LLMs to differentiate high vs low OO5 scores at
encounter and clinician levels.

Experiment Encounter level Clinician level

T-test (t) P-value T-test (t) P-value
Gemini—1.5-pro—002 9.02 <0.01 4.02 <0.01
GPT 40 10.05 0.039 2.71 0.022

3.3.3. Trend analysis of LLM performance and human-rater agreement

Table 6 compares the overall OO5 performance of the model in the
test set stratified into high and low rater agreement subsets. In the high
rater agreement set, where raters 1 and 2 exhibited higher agreement
(r,=0.98), the LLMs also showed a stronger correlation (0.69 for
Gemini-1.5-Pro-002 and 0.75 for GPT-4o, tracking 71 % and 77 % of the
ceiling of 0.98) with overall OO5 rater scores. Conversely, in the low
rater agreement subset, where human agreement was lower (r,=0.56),
the LLMs’ correlations dropped to 0.48 and 0.52 (tracking 86 % and
93 % of the ceiling of 0.56), respectively. Fig. 1 also visualizes the
relationship between rater agreement and LLM performance. A positive
correlation was observed between the score differences of rater 1 and
rater 2 and the deviation of LLM-predicted scores from the mean rater’s
scores. This suggests that when raters disagreed significantly, LLM
predictions also deviated more from human scores, but the LLM per-
formance remains close to the ceiling.

Similarly, on item-level scores, we can see from Table 5 that models
perform well on items with high inter-rater agreement — items 4 (Pref-
erence elicitation) and 5 (Decision talk) (0.73 and 0.69). Conversely, in
items 1 (Decision Awareness) and 2 (Team talk where the inter-rater
agreement is low (0.54 and 0.53), the models performed worse. How-
ever, item 3 presented a unique challenge; despite high human corre-
lations, both models showed considerably worse performance for this
item. We have included Bland-Altman analyses on bias in Appendix B.

4. Discussion and conclusion
4.1. Discussion

4.1.1. Principal findings

Scores for OO5 items generated by GPT-40 and Gemini-1.5-Pro-002
correlated strongly with human ratings of SDM in clinical encounters.
Both models distinguished high- from low-scoring encounters. Incor-
porating detailed prompts further improved performance. Correlations
were higher when human raters agreed and lower when they disagreed,
consistent with prior evidence that OPTION-5 and related coding tasks
show only modest inter-rater reliability. When compared against the
ceiling set by human agreement in our dataset, model-human correla-
tions reached 75-85 % of the maximum possible, which we interpret as
strong performance given the inherent difficulty of dialogue-based
coding. These results reinforce the potential for using LLMs to auto-
mate these assessments.

4.1.2. Strengths and weaknesses of the method

Strengths include the use of real-world clinical transcripts and
trained human raters, with ethical approval for secondary analysis [50].
This is based on a prior work [16-18] on one item, in which we showed
sufficient promise to evaluate on all five items. We deliberately opti-
mized prompts and compared open- and closed-source models to ensure
robustness and generalizability, and our conclusions are not specific to a
single prompt design or model. Evaluating both open (e.g., LLAMA) and
closed (e.g., GPT-40, Gemini-1.5-Pro-002) models, to highlight options
for institutions with resource and privacy constraints. It is important to
note that, similar to our observation here, the inter-rater agreement in
health communication coding is typically modest, reflecting the
inherent difficulty of evaluating subtle dialogue behaviors in clinical
conversations [19,53,56]. Model-human correlations are bounded by
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Table 5
005 Scores: Correlation between the scores of the best-performing LLM and the correlation between the two human raters (N = 247 encounters).
Pearson Correlations of Mean OO5 Human Rater Scores Gemini-1.5-pro-002 GPT-40
Pearson Correlation P-value Pearson Correlation P-value Pearson Correlation P-value
Item 1 (Decision Awareness) 0.54 0.02 0.15 0.018 0.17 <0.01
Item 2 (Team talk) 0.53 <0.01 0.23 <0.01 0.37 <0.01
Item 3 (Option talk) 0.80 <0.01 0.39 <0.01 0.31 <0.01
Item 4 (Preference elicitation) 0.73 <0.01 0.63 <0.01 0.63 <0.01
Item 5 (Decision talk) 0.69 <0.01 0.52 <0.01 0.50 <0.01
Overall 0.77 <0.01 0.59 <0.01 0.64 <0.01

Table 6

Pearson correlation of best-performing LLMs’ predicted scores and average rater scores on rater score consistency between the human raters. For Spearman correlation,

refer to Appendix Table 3 (Test dataset of 247 encounters).

Test set (247)

High Rater Agreement Test subset (n = 89)

Low Rater Agreement test subset (n = 158)

Pearson Correlation P-value Pearson Correlation
Gemini—1.5-pro—002 0.59 <0.01 0.69
GPT—40 0.64 <0.01 0.75
Rater correlation 0.77 <0.01 0.98

P-value Pearson Correlation P-value
<0.01 0.49 <0.01
<0.01 0.53 <0.01
<0.01 0.56 <0.01

human-human agreement; our results show that LLMs are already
approaching this ceiling. Limitations include reliance on one breast
cancer trial in which surgeons were exposed to an SDM intervention,
limiting generalisability. Broader confirmation in other clinical con-
texts, as well as with untrained clinicians, is needed. Preparing and
anonymizing transcripts was also resource-intensive.

4.1.3. Results in context

The range of possible uses for generative Al to advance SDM is well-
recognized [15,17,18,57-59], and pre-LLM Al to automate assessments
of provider-patient interactions has been considered [42,46,60-62].
Similarly, the potential to automate clinical diagnoses such as dementia
or depression based on transcripts [63], the use of digital scribes for
automated medical documentation [31,64] has also been considered.
However, we have not identified studies focused on using validated
measures to assess different approaches in clinical encounters, such as
agenda-setting or the adoption of SDM. Our study adds to this landscape
by showing that LLM-human agreement can approach ~ 80 % of the
ceiling set by human-human agreement, suggesting that these models
are already performing near the achievable practical upper bound.

Comparable challenges and performance have been reported in ed-
ucation (essay/classroom scoring; [65]), business (call center dialogue
analysis; [66]), and law (argument mining; [67]). In these domains,
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Fig. 1. Relationship between rater agreement and LLM-rater agree-
ment visualized.

correlations of 0.5-0.7 are often considered sufficient for feedback,
suggesting similar potential in healthcare.

4.1.4. Implications

Human rating of SDM is resource-intensive, prone to lapses in con-
centration, and yields only modest reliability. This is especially impor-
tant as assessing SDMs requires high levels of concentration to be
consistent, and salient aspects of the dialogue are short and easy to miss.
Automated assessments, if accurate, offer greater consistency. Our best-
performing models already capture much of the human ceiling, sug-
gesting that larger datasets and better prompts may eventually close or
exceed this gap. In the future, only LLM or Hybrid approaches—where
LLMs identify and score dialogue segments for human validation, might
even be superior to human rating. A further hypothesis is that a reliable
distinction between high- and low-performing encounters could enable
actionable clinician feedback, as suggested in prior work [12,19],
though this requires testing.

4.2. Conclusion

The findings highlight the potential of LLMs in evaluating aspects of
dialogue between clinicians and patients where existing measures exist
that provide the basis for the development of reliable prompts. Our
conclusions are limited to a single RCT dataset in breast cancer surgery,
and generalisability beyond this setting remains to be established.
Expanding datasets and refining prompts will be key. As in education,
business, and policy, automated dialogue assessment could provide
scalable, consistent evaluations of communication quality.

4.3. Practice implications

Generative Al LLMs could provide a way to efficiently evaluate SDM
performance. At present, our findings, though limited by one dataset,
primarily support their use as a feasible and scalable research tool for
automating observer-based assessments. The possibility of extending
these methods to provide actionable feedback to clinicians remains
theoretical and will require further study, but our results suggest this is a
promising direction for future work.

Abbreviations
005 Observer OPTION-5

LLM Large Language Model
SDM Shared Decision-Making
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GPT Generative pre-trained transformer
PaLM Pathway-based Language Model

p Pearson Correlation

OM Observer-Based Measure
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The best-performing prompt. The prompt instructs LLM to score all-time at once, with detailed descriptions for
each of the items. The placeholders in the prompt, for e.g., [Item 1 OO5 Definitions] are taken directly from

[12,16]

We are interested in categorizing and evaluating doctor’s sentences in their conversation with their patients on shared
decision making with the Observer OPTION 5 (OO5) five-item measure. We are interested in the following categories:

The Observer OPTION 5 Measure definitions:
Item 1 OO5: [Item 1 OO5 Definitions]
[Item 1 score 0—4 definition and examples]
Item 2 OO05: [Item 2 OO5 Definitions]
[Item 2 score 0—4 definition and examples]
Item 3 005: [Item 3 OO5 Definitions]
[Item 3 score 0—4 definition and examples]
Item 4 005: [Item 4 OO5 Definitions]
[Item 4 score 0—4 definition and examples]
Item 5 OOS5: [Item 5 OO5 Definitions]
[Item 5 score 0—4 definition and examples]

Instructions for selecting sentence IDs:

[Instructions for selecting sentence IDs for each of the items]

Output data structure:

"explanation": str "short explanation of why the sentence is scored as such for item 1",

"explanation": "Doctor points out the two options for breast cancer with an aim of comparing them.",

{
"item 1" [
{
"sentence_id": int or list or "All" "sentence index(s) contains item 1",
"score": int "item 1 score for the sentence id(s)",
1A
1,
b
Examples:-
Example output 1:
{
"item 1" [
{
"sentence_id": 8,
"score": 3,
1A
}
Example output 2:
{

(continued on next page)
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Appendix Table 1 (continued)

"item 1" [{
"sentence_id": "All",
"score": 0,
"explanation": "Doctor did not point out the medical options for the patient.",

}

Instructions for output format:
[Instructions for output format]

Output JSON:

Appendix Table 2
Detailed Statistics on the dataset

Measure Value

Transcript-level statistics

Mean number of lines 488
Standard deviation (lines) 334
Maximum transcript length 1675

005 sum scores (0-100)

Mean 54.15
Standard deviation 25.77
Median 55.0
% < 25 30 %
% >75 35%
Range 100.00
Q1 (25th percentile) 52.5
Q3 (75th percentile) 75.00
Interquartile range (IQR) 52.5

Appendix Table 3
Spearman correlation of best-performing LLMs’ predicted scores and average rater scores on rater score consistency between the human raters. (Test dataset of 247
encounters)

Test set (247) High Rater Agreement Test subset (n = 89) Low Rater Agreement test subset (n = 158)
Spearman Correlation P-value Pearson Correlation P-value Pearson Correlation P-value
Gemini—1.5-pro—002 0.54 < 0.01 0.64 < 0.01 0.45 < 0.01
GPT—40 0.60 < 0.01 0.75 <0.01 0.50 <0.01
Rater correlation 0.74 <0.01 0.97 <0.01 0.54 <0.01

Appendix B. Bias Detection

B.1 Methods

To complement correlation and ICC analyses, we conducted Bland-Altman analyses to examine systematic and proportional bias between raters
and models. For overall Observer OPTION-5 scores (0-4 scale), we calculated mean differences (bias), 95 % limits of agreement, and tested for
proportional bias using linear regression of differences against means. We applied this approach both to (1) the best-performing LLM compared to the
human reference (mean of two raters) and (2) human Rater 1 compared to Rater 2.

B.2 Results

The Bland-Altman analysis revealed that the best-performing LLM (GPT-40) exhibited a systematic positive bias of + 0.25 points across all five
005 items (on the 0-4 scale, p < 0.01). Proportional bias was also present, with model deviations increasing at higher OO5 scores.

Comparisons between human Rater 1 and Rater 2 also showed a systematic bias of + 0.10 points (p < 0.01), alongside evidence of proportional
bias. Given the restricted 0-4 scoring range, these biases represent approximately 6 % (LLM vs. humans) and 2.5 % (human vs. human) of the total
item range.

B.3 Discussion

These analyses indicate that the LLM’s systematic bias, while statistically significant, is modest in absolute terms and falls within the general
magnitude of variability observed between trained human raters. Prior studies of OPTION-5 have similarly reported non-negligible inter-rater
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variability, with mean rater differences of ~ 0.3-0.4 points on the 0-4 scale and ICCs in the 0.6-0.7 range [19,53]. This suggests that both systematic
and proportional bias are features of human-based OOS5 scoring itself. In this context, the LLM’s performance can be considered comparable to human
variability, although future work may focus on calibration strategies to further reduce fixed and proportional bias.
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