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A B S T R A C T

Objectives: Observer-based measures of shared decision rely on human raters, it is resource-intensive, limiting 
routine assessment and improvement. Generative artificial intelligence could increase the speed and accuracy of 
observer-based evaluation while reducing the burden. This study aimed to assess the performance of large 
language models (LLMs) from Gemini, GPT, and LLaMA family of models in evaluating the extent of shared 
decision-making between clinicians and women considering surgery for early-stage breast cancer.
Methods: LLM-generated scores were compared with those of trained human raters from a randomized controlled 
trial using the 5-item Observer OPTION-5 measure. We analyzed 287 anonymized transcripts of breast cancer 
consultations. A series of prompts were tested across models, assessing correlations with human scores. We also 
evaluated the ability of LLMs to distinguish high versus low encounters and the impact of inter-rater agreement 
on performance.1

Results: The scores for Observer OPTION-5 items generated by the GPT-4o and Gemini-1.5-Pro-002 correlated 
with human ratings (Pearson r ≈ 0.6, p-value<0.01), representing ≈ 75–80 % of the correlation observed be
tween human raters themselves (r = 0.77). Providing detailed descriptions and examples improved the models’ 
performance. The results also confirm that the models could distinguish high- from low-scoring encounters, with 
an independent-samples t-test showing a large and significant separation between the two groups (t > 10, 
p < 0.01).
Conclusions: Based on the breast cancer surgery dataset we explored, LLMs can evaluate aspects of clinician- 
patient dialog using existing measures, providing the basis for the development and fine-tuning of prompts. 
Future work should focus on generalizability, larger datasets, and improving model performance.
Practice implications: The prospect of being able to automate the assessment of shared decision-making opens the 
door to rapid feedback as a means for reflective practice improvement.

1. Introduction

Shared decision-making (SDM) is a collaborative process where cli
nicians and patients share information and deliberate treatment options. 
SDM improves patient knowledge, lowers costs, and enhances outcomes 
[1–4]. US policy initiatives like the Merit-based Incentive Payment 
System (MIPS), Medicare Access and CHIP Reauthorization Act of 2015 
(MACRA), and the Centers for Medicare and Medicaid support and 
incentivize SDM [5]. Similarly, the UK National Health Service (NHS) 
has embedded SDM into its care strategy [6], Canada established 

pan-Canadian initiatives through the Health Canada SDM frameworks 
[7], and the Netherlands has made SDM a cornerstone of oncology and 
chronic care guidelines [8]. However, there is agreement that mea
surement methods must be improved [9].

Patient-reported experience measures exist [10,11] but are biased, 
have low response rates, and are not widely implemented [9,12,13]. 
Observer-based measures (OMs), such as Observer OPTION-5 (OO5), 
provide more reliable assessments by analyzing recorded clin
ician–patient interactions and are not based on patients’ memory as in 
patient-reported experience measures [10]. OMs also typically reveal 
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lower SDM levels and significant differences in performance between 
clinicians [10]. However, OMs are resource-intensive, limiting their use 
to research [11,12]. Automating dialogue assessment has been sug
gested as a way to provide rapid feedback [14–18].

Observer OPTION-5 (OO5), a validated 5-item tool based on the 
collaborative deliberation model [13], demonstrated good validity in 
prior research [12,19–23], typically requires two independent raters. 
Advancements in natural language processing (the field of computer 
science focused on automated understanding and processing of human 
language) and artificial intelligence (AI) offer opportunities to automate 
SDM assessment, reducing training burdens and costs, enabling 
large-scale research and clinical trial use, and potentially offering 
practitioners direct feedback [16–18].

Large Language Models (LLMs–AI systems trained on vast text 
corpora that can generate and interpret languages) have redefined AI 
benchmarks, and are increasingly applied in healthcare (diagnostics, 
decision support, literature interpretation) [24–31]. They show emer
gent abilities, such as extracting nuanced information from clinical 
notes, highlighting their potential in healthcare [28,31,32].

OpenAI’s GPT-3.5 and GPT-4 and Google’s PaLM2 rank among the 
top-performing models in language understanding and generation [33, 
34]. These LLMs enable zero-shot learning (i.e., requiring no additional 
training data or examples) [31,35] and few-shot learning (where 
providing only limited examples can enhance task performance) [24,30, 
36–41]. These LLMs are therefore particularly useful when labeled 
training data is scarce or impractical to collect even in production sys
tems [29–31,37,41,42].

While other models like BERT [43–45] (a widely used neural 
network architecture for language understanding) are used in medical 
text classification and generation [42,46,47], we opted for LLMs due to 
limited training data availability. Publicly available LLM models like 
LLaMA [48] and Mistral [49] were not considered, as their zero- and 
few-shot performance lagged behind the commercial LLMs used in this 
study.

Given the rapid advancements in LLM capabilities, our primary goal 
is to assess their potential for automatically rating clinical conversations 
using Observer OPTION-5 (OO5). We achieve this by using an LLM to 
detect specific speech acts in clinical transcripts and comparing their 
performance to human raters who previously used the OO5 measure to 
assess the same data.

2. Methods

2.1. Design

We conducted secondary analyses of an existing corpus of anony
mized transcripts from audio recordings of conversations between breast 
surgeons and patients about treatment for early-stage breast cancer. 
Anonymization was done in three rounds: (1) the transcription company 
tagged patient-identifiable information using brackets (e.g., “You must 
be [Angela].”), (2) A trained staff member removed all bracketed con
tent and reviewed each transcript for other identifiers, including clini
cian information, and (3) another staff member verified the removal of 
all identifiers.

This work builds on a prior proof-of-concept study where we 
developed an automated rating process for the first item of the Observer 
OPTION-5 measure [16]. We show all five items of the measure in Box 1. 
These secondary analyses were reviewed and approved by the Dart
mouth College Institutional Review Board (STUDY00030157).

We used transcripts from a randomized trial conducted in four cancer 
centers. [50] The trial compared versions of a conversation aid for 
surgical decision making in early-stage breast cancer. Surgeons in the 
intervention arms were trained to use the Option Grid tool, which 
compared breast-conserving surgery with radiation versus mastectomy. 
Other therapies were sometimes discussed, including chemotherapy, 
radiation, and genetic testing. Patients already knew their breast cancer 
diagnosis before the appointment. We excluded encounters with in
terpreters for non-English communication to avoid added complexity.

2.2. Transcript preparation and scoring with OO5

We used spaCy to split speaker turns into individual line segments 
based on transcription punctuation. Two independent human raters, 
formally trained in Observer OPTION-5 (OO5), scored each encounter 
by listening to recordings and rating items 1–5 on a 0–4 scale (0 =no 
evidence, 4 =highest achievement) [19].

The transcripts were divided into contiguous segments of 120 lines. 
Each segment and its line numbers were input to the LLM, which 
generated scores for relevant OO5 items. We used 120-line segments 
because LLMs have limited input lengths and performance declines with 
longer inputs [51]. Segment-level predictions were aggregated into 
encounter-level scores. The LLM was prompted to score transcripts (and 
identify the corresponding line numbers) and identify corresponding 
line numbers using these rules: 

Box 1
Items of the Observer OPTION-5 Measure [19].

Item Statement Description

1 Decision awareness: For the health issue being discussed, the clinician draws attention to or confirms that alternate treatment or 
management options exist or that the need for a decision exists. If the patient, rather than the clinician, draws attention to the 
availability of options, the clinician responds by agreeing that the options need deliberation.

2 Team talk: The clinician reassures the patient or reaffirms that the clinician will support the patient to become informed or 
deliberate about the options. If the patient states that they have sought or obtained information prior to the encounter, the clinician 
supports such a deliberation process.

3 Option talk: The clinician gives information or checks understanding about the options that are considered reasonable (this can 
include taking no action), to support the patient in comparing alternatives. If the patient requests clarification, the clinician supports 
the process.

4 Preference elicitation: The clinician makes an effort to elicit the patient’s preferences in response to the options that have been 
described. If the patient declares their preference(s), the clinician is supportive

5 Decision talk: The clinician makes an effort to integrate the patient’s elicited preferences as decisions are made. If the patient 
indicates how best to integrate their preferences as decisions are made, the clinician makes an effort to do so.

S.P. Selvaraj et al.                                                                                                                                                                                                                              Patient Education and Counseling 142 (2026) 109362 

2 



1. If all lines scored 0→transcript item score= 0
2. If any non-zero→transcript item score=average of non-zero scores.

For item-level scores overall and by clinician, we averaged the two 
rater scores and computed summed averages. Clinician-level scores were 
calculated by averaging the summed OO5 scores across encounters. 
Inter-rater agreement was assessed using overall and item-level corre
lations. Following OO5 conventions, LLM outputs (0–4) were rescaled to 
0–20; combined item scores therefore ranged 0–100.

To generate item-level scores overall and by clinician, we first 
averaged the two rater scores, and we computed the summed average 
score. Similarly, we computed clinician-level scores by averaging the 
summed OO5 item scores for their encounters. To assess agreement 
between the two independent raters, we performed overall and item- 
level correlation analyses. Following OO5 scoring conventions, we 
rescaled the LLM output for each item score from 0 to 4–0–20. Thus, 
when combining the scores of the five OO5 items, we get a score range of 
0–100, which we use in this article. Transcript scores were calculated as 
the sum of averaged item scores, and clinician-level scores as the 
average of their encounter-level sums.

For model development and evaluation, we randomly split the 
dataset into a validation set and a test set. The validation set (n = 40 
encounters) was used to iteratively design and optimize prompts, 
allowing us to compare alternative prompt formulations and select the 
best-performing one. The remaining transcripts (n = 247 encounters) 
formed the held-out test set, which was used exclusively for the final 
evaluation of model performance. This separation ensured that the test 
results reflect out-of-sample performance, independent of the data used 
for prompt optimization.

2.3. Comparisons of LLM OO5 score prediction

We defined the task for the LLMs as the identification and scoring of 
clinician utterances in the clinical encounter transcripts that correspond 
to item statements in the OO5 manual. We compared how well LLMs 
from open-source and closed-source families performed this task and 
selected the following LLMs: Meta’s LLAMA series, OpenAI’s GPT series, 
and Google’s Gemini series. During these evaluations, we selected pri
vacy settings for the API provider so that the LLMs did not log or store 
any part of the data.

2.3.1. The design and optimization of prompts for the LLMs
Prompts for these models were designed to optimize the LLM’s per

formance, and compared how well the scores correlated with OO5 scores 
provided by human raters. An LLM prompt typically has three parts, see 
Box 2.

The outline of our prompts can be seen in Appendix Table 1. We 
described the clinical setting of the encounter transcripts and described 
the task objective, namely, to find and score instances in the transcripts 
of OO5 items. The prompts also contained detailed descriptions of each 
OO5 item, supplemented by example phrases and/or statements illus
trating the scoring spectrum. Instructions for scoring and formatting the 

output were included to ensure a consistent, uniform output format. 
Depending on the comparative design, we instructed the LLMs to iden
tify and score relevant phrases/statements for each item or all-items 
simultaneously. Given our focus on assessing surgeons’ communica
tion about breast cancer surgery, the LLMs were instructed to exclude 
unrelated dialogue. Additionally, the LLMs were instructed to explain 
their scoring decisions because there is evidence that this strategy en
hances performance [52]. Similarly, we also included examples of the 
task (taken from the OO5 User Manual, Appendix Table 1). We evalu
ated multiple prompts and models on the validation set to identify the 
best-performing configurations (see Box 3):

2.3.2. Analysis of the LLM performance/statistical analysis to differentiate 
performance

We evaluated the correlations between LLM-generated scores and 
the human rater scores at the level of OO5 items, the sum of OO5 items 
for each encounter, and at the OO5 score level for each clinician (the 
mean of their encounter OO5 scores).

To contextualize LLM performance, we also measured the level of the 
two raters’ agreement by computing Pearson (rp) and intraclass corre
lation (ICC) level scores. The best-performing prompt from the prompt 
optimization step on GPT-4o was selected for further evaluation on the 
test set with other LLMs. We report rp and ICCs, consistent with prior 
OPTION-5 studies, to assess consistency and absolute agreement on 
continuous ratings.

Prior research has shown that inter-rater reliability in OPTION-5 
scoring is modest, with ICC values often in the 0.6–0.7 range [19,53]. 
Similar levels of reliability (0.5–0.6) have also been reported in broader 
health conversation coding tasks [54,55]. Because the average of two 
human raters was used as the reference standard in our study, the 
maximum achievable correlation for any model is naturally constrained 
by the agreement between those raters. In this context, we interpret 
model–human correlations that achieve at least 70–80 % of the 
measured human–human agreement as strong evidence of alignment.

We examined the LLM’s ability to distinguish between high- and low- 
performing conversations by dividing the test set into two groups: 

1. Low-Performing SDM Encounter: Where OO5 sum scores < 50.
2. High-Performing SDM Encounters: Where OO5 sum scores ≥ 50.

This threshold was chosen a priori based on OPTION-5 guidance and 
prior validation studies, which conceptualize the midpoint of the scale 
(50/100) as distinguishing minimal from more consistent evidence of 
shared decision-making behaviors [12,19,23]. We therefore defined 
high/low groups using this interpretive benchmark rather than 
dataset-derived values such as the mean or median.

Clinician-level segregation was evaluated to determine whether 
LLMs could distinguish between high- and low-performing clinicians 
based on their average OO5 conversation scores. To assess this, we used 
an independent-samples t-test, which evaluates whether the means of 
two groups differ more than would be expected by chance. In our case, 
the two groups were high versus low-performing encounters (OO5 ≥ 50 

Box 2
Standard LLM Prompt Design.

Part Description

i) A task description, with optional provision of detailed examples that provide details for scoring.
ii) Data input
iii) Statements that elicit the required results or prediction, e.g., “Output predictions:”

S.P. Selvaraj et al.                                                                                                                                                                                                                              Patient Education and Counseling 142 (2026) 109362 

3 



vs. < 50). The t-statistic quantifies the size of the difference relative to 
the variability within each group, with higher values indicating greater 
separation. We also explored grouping the 12 clinicians into high- and 
low-performing categories based on their summed OO5 scores.

2.3.3. Trend analysis of LLM performance and human-rater agreement
For this analysis, the test set was divided into two subsets based on 

rater agreement on the OO5 sum scores: 

• High Rater Agreement Test Set: Encounter scores where the dif
ference between the two rater OO5 scores was ≤ 10.

• Low Rater Agreement Test Set: Encounter scores where the dif
ference between the two rater OO5 scores was greater than 10.

We used these subsets to assess whether the level of human-rater 
agreement affected the LLM performance and visualized the difference 
between LLM 005 Scores and Human Rater Scores vs the difference 
between the human rater scores.

Although we report multiple statistical comparisons (e.g., encounter- 
level, clinician-level, item-level, and subgroup analyses), these are all 
derived from a single fixed set of predictions per model generated on the 
test set after prompt optimization. In total, only six model outputs were 
evaluated, and the various analyses represent different perspectives on 
these same outputs rather than independent hypothesis tests. This 
design reduces the risk of Type I error inflation typically associated with 
multiple testing. Nevertheless, we interpret the findings as exploratory 
and emphasize the importance of consistent patterns across analyses 
rather than isolated p-values.

3. Results

3.1. Available transcripts

Our final set of encounter transcripts included 110 collected at center 
1, 46 collected at center 2, 8 collected at center 3, and 123 collected at 
center 4 – a total of 287 conversations with 12 surgeons. We used a 
random number generator to select 40 transcripts to create a validation 
set of encounters. The remaining 247 conversations formed the test set 
of encounters. The conversations were transcribed as separate speaker 
turns. On average, each encounter transcript contained 488 lines 
(standard deviation of 334), with the longest transcript containing 1675. 
The mean human-rater summed OO5 score across the encounter tran
scripts was 54.15 (standard deviation = 25.77). Slightly less than a third 
(30 %) of the transcripts had an average OO5 sum score of 25 or lower, 
while 35 % had an average sum score of 75 or higher. For more detailed 
statistics, refer to Appendix Table 2. The levels of agreement between 
human raters were moderate to high, as shown by the correlation in 
Table 1. As expected, correlations for the overall sum score were higher 
than for individual items, reflecting the increased reliability of com
posite scores that aggregate across items. Because model–human cor
relations are bounded by the level of agreement between the two human 
raters (r = 0.77), we interpret performance relative to this ceiling. For 

reference, correlations of 0.54, 0.62, and 0.69 correspond to 70 %, 80 %, 
and 90 % of the human–human agreement, respectively. These thresh
olds provide context for evaluating the strength of model–human cor
relations reported below.

3.2. The optimization of prompts for the LLMs

The results of the prompt optimization experiments on the validation 
set (40 transcripts) using GPT-4o are summarized in Table 2. Prompts 
that included only the item’s definitions performed poorly, yielding a 
low and non-significant correlation (r = 0.22, p = 0.17) when predicting 
one item at a time and (r = 0.46, p < 0.01) when predicting all five OO5 
items simultaneously. Incorporating detailed descriptions and granular 
scoring examples in addition to the task description for each item of OO5 
improved performance significantly, with correlations increasing to 
0.45 (p < 0.01) for predicting one-item at a time and 0.50 (p < 0.01) for 
predicting all items simultaneously. Refer to Appendix Table 1 for the 
complete prompt with the task description, detailed description, and 
scoring examples.

The addition of the Catch-All Category (see Box 3) reduced false- 
positive errors, but had a negative impact on LLM performance. Sensi
tivity analysis on the addition of the Catch-All Category shows that the 
LLMs often misclassified instances of the five items into the catch-all 
category (in both cases of predicting for one item at a time and all 
items simultaneously). Sensitivity analysis on comparing predicting 
single items versus all items simultaneously shows that, when predicting 
one item at a time, the model frequently misclassifies instances of the 
other four items as positive for the predicted item; these errors are 

Box 3
Evaluation Using Multiple Prompt Versions.

1. Baseline: The task description only used definitions of each OO5 item.
2. Detailed Descriptions: The task description, in addition to definitions, included granular examples for each score in the OO5 items.
3. Simultaneous Prediction: The LLM was instructed to predict scores for all OO5 items simultaneously.
4. Catch-All Category Addition: Introducing a category for good communication practices not covered by OO5 or related to breast surgery, 

e.g., the clinician greeting the patient or covering OO5 items related to post-surgery treatments.

Table 1 
Correlations between two human raters (N = 287 encounters).

Rater Correlation (Pearson rp) Rater Correlation (ICC)

Item 1 0.54 0.44
Item 2 0.53 0.34
Item 3 0.81 0.74
Item 4 0.73 0.61
Item 5 0.69 0.54
Overall Sum Score 0.77 0.77

Table 2 
Correlation between LLM-predicted (GPT-4o) OO5 scores and mean Rater Scores 
(Validation dataset of randomly selected 40 transcripts).

Experiment Pearson 
Correlation (rp)

P- 
value

Predicting one item at-a-time 0.22 0.17
Predicting one item at-a-time þDetailed 

description
0.45 <0.01

Predicting all-items at once 0.46 <0.01
Predicting all-items at once þDetailed 

description
0.50 <0.01

Predicting all-items at once þDetailed 
description þ Catch-all category

0.32 0.039
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lowered when predicting all items simultaneously.
From the prompt optimization on the evaluation set, we find that 

predicting all five items simultaneously with detailed descriptions and 
examples performed best (Appendix Table 1). We used this ‘best’ prompt 
to test across different LLMs and conduct further analysis in the rest of 
the paper.

3.3. Analysis of LLM performance

In Table 3, we show the all-item encounter-level Pearson correlations 
of different LLMs on the test dataset with the optimized prompts. The 
top-performing models were Gemini-1.5-Pro-002 and GPT-4o, achieving 
rp of 0.59 and 0.64, respectively. Given that the ceiling for model–hu
man agreement is bounded by the observed human–human correlation 
(rp=0.77), these results correspond to 77 % (Gemini-1.5-Pro-002) and 
83 % (GPT-4o) of the maximum possible agreement. Both, therefore, 
meet our pre-specified threshold of strong performance (>70 % of the 
ceiling). At the clinician level, Gemini-1.5-Pro-002 recorded a rp= 0.88, 
and GPT-4o recorded a correlation of 0.75. Both results were statistically 
significant. Other models, including those from the LLAMA family, 
exhibited lower correlations (rp=0.21), and their results were not sta
tistically significant.

3.3.1. Stratification by high and low OO5 scores, encounter and clinician 
levels

The t-test results for distinguishing High and Low-Performing SDM 
encounters (OO5 scores greater than 50/100 from encounters scoring 
lower than 50/100 are shown in Table 4. The best-performing models 
from Table 3, Gemini-1.5-Pro-002 and GPT-4o, recorded t-test statistics 
of 9.0 (p < 0.01) and 10.05 (p = 0.039), respectively. These results 
reflect a statistically significant and strong difference between the pre
dicted scores of high- and low-performing conversations. Despite the 
limited number of clinicians, Gemini-1.5-Pro-002 and GPT-4o recorded 
moderate t-test values of 4.0 (p < 0.01) and 2.7 (p = 0.02), respectively 
(Table 4). For other low-performing LLM models, clinician-level segre
gation results were not statistically significant, so we are not including 
the results here.

3.3.2. Item-level scores: correlation between LLM and human rater OO5 
scores

Table 5 shows the item-level correlation for Gemini-1.5-Pro-002 and 
GPT-4o. Items 4 and 5 showed a high correlation with rater scores for 
both models (Gemini-1.5-Pro-002: ≈0.6, GPT-4o: ≈0.5). Conversely, 
item 1 demonstrated the lowest correlation, with values of ≈0.15 for 
both models.

3.3.3. Trend analysis of LLM performance and human-rater agreement
Table 6 compares the overall OO5 performance of the model in the 

test set stratified into high and low rater agreement subsets. In the high 
rater agreement set, where raters 1 and 2 exhibited higher agreement 
(rp=0.98), the LLMs also showed a stronger correlation (0.69 for 
Gemini-1.5-Pro-002 and 0.75 for GPT-4o, tracking 71 % and 77 % of the 
ceiling of 0.98) with overall OO5 rater scores. Conversely, in the low 
rater agreement subset, where human agreement was lower (rp=0.56), 
the LLMs’ correlations dropped to 0.48 and 0.52 (tracking 86 % and 
93 % of the ceiling of 0.56), respectively. Fig. 1 also visualizes the 
relationship between rater agreement and LLM performance. A positive 
correlation was observed between the score differences of rater 1 and 
rater 2 and the deviation of LLM-predicted scores from the mean rater’s 
scores. This suggests that when raters disagreed significantly, LLM 
predictions also deviated more from human scores, but the LLM per
formance remains close to the ceiling.

Similarly, on item-level scores, we can see from Table 5 that models 
perform well on items with high inter-rater agreement – items 4 (Pref
erence elicitation) and 5 (Decision talk) (0.73 and 0.69). Conversely, in 
items 1 (Decision Awareness) and 2 (Team talk where the inter-rater 
agreement is low (0.54 and 0.53), the models performed worse. How
ever, item 3 presented a unique challenge; despite high human corre
lations, both models showed considerably worse performance for this 
item. We have included Bland–Altman analyses on bias in Appendix B.

4. Discussion and conclusion

4.1. Discussion

4.1.1. Principal findings
Scores for OO5 items generated by GPT-4o and Gemini-1.5-Pro-002 

correlated strongly with human ratings of SDM in clinical encounters. 
Both models distinguished high- from low-scoring encounters. Incor
porating detailed prompts further improved performance. Correlations 
were higher when human raters agreed and lower when they disagreed, 
consistent with prior evidence that OPTION-5 and related coding tasks 
show only modest inter-rater reliability. When compared against the 
ceiling set by human agreement in our dataset, model–human correla
tions reached 75–85 % of the maximum possible, which we interpret as 
strong performance given the inherent difficulty of dialogue-based 
coding. These results reinforce the potential for using LLMs to auto
mate these assessments.

4.1.2. Strengths and weaknesses of the method
Strengths include the use of real-world clinical transcripts and 

trained human raters, with ethical approval for secondary analysis [50]. 
This is based on a prior work [16–18] on one item, in which we showed 
sufficient promise to evaluate on all five items. We deliberately opti
mized prompts and compared open- and closed-source models to ensure 
robustness and generalizability, and our conclusions are not specific to a 
single prompt design or model. Evaluating both open (e.g., LLAMA) and 
closed (e.g., GPT-4o, Gemini-1.5-Pro-002) models, to highlight options 
for institutions with resource and privacy constraints. It is important to 
note that, similar to our observation here, the inter-rater agreement in 
health communication coding is typically modest, reflecting the 
inherent difficulty of evaluating subtle dialogue behaviors in clinical 
conversations [19,53,56]. Model-human correlations are bounded by 

Table 3 
Correlation between LLM-predicted scores and mean human rater scores (Test 
dataset of 247 encounters).

Comparisons Encounter level

Pearson Correlation rp P-value

GPT¡4o 0.64 <0.01
Gemini¡1.5-Pro¡002 0.59 <0.01
Llama 405b 0.40 0.018
LLama 70b 0.33 <0.01
Gemini¡1.5-flash¡001 0.32 <0.01
Gpt¡4o-mini 0.196 <0.01
Comparisons Clinician level

Pearson Correlation rp P-value
Gemini¡1.5-Pro¡002 0.88 <0.01
GPT¡4o 0.75 <0.01
LLama 70b 0.46 0.128
Llama 405b 0.44 0.279
Gemini¡1.5-flash¡001 0.36 0.256
Gpt¡4o-mini 0.31 0.327

Table 4 
Evaluating the ability of LLMs to differentiate high vs low OO5 scores at 
encounter and clinician levels.

Experiment Encounter level Clinician level

T-test (t) P-value T-test (t) P-value

Gemini¡1.5-pro¡002 9.02 <0.01 4.02 <0.01
GPT 4o 10.05 0.039 2.71 0.022
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human-human agreement; our results show that LLMs are already 
approaching this ceiling. Limitations include reliance on one breast 
cancer trial in which surgeons were exposed to an SDM intervention, 
limiting generalisability. Broader confirmation in other clinical con
texts, as well as with untrained clinicians, is needed. Preparing and 
anonymizing transcripts was also resource-intensive.

4.1.3. Results in context
The range of possible uses for generative AI to advance SDM is well- 

recognized [15,17,18,57–59], and pre-LLM AI to automate assessments 
of provider-patient interactions has been considered [42,46,60–62]. 
Similarly, the potential to automate clinical diagnoses such as dementia 
or depression based on transcripts [63], the use of digital scribes for 
automated medical documentation [31,64] has also been considered. 
However, we have not identified studies focused on using validated 
measures to assess different approaches in clinical encounters, such as 
agenda-setting or the adoption of SDM. Our study adds to this landscape 
by showing that LLM–human agreement can approach ≈ 80 % of the 
ceiling set by human–human agreement, suggesting that these models 
are already performing near the achievable practical upper bound.

Comparable challenges and performance have been reported in ed
ucation (essay/classroom scoring; [65]), business (call center dialogue 
analysis; [66]), and law (argument mining; [67]). In these domains, 

correlations of 0.5–0.7 are often considered sufficient for feedback, 
suggesting similar potential in healthcare.

4.1.4. Implications
Human rating of SDM is resource-intensive, prone to lapses in con

centration, and yields only modest reliability. This is especially impor
tant as assessing SDMs requires high levels of concentration to be 
consistent, and salient aspects of the dialogue are short and easy to miss. 
Automated assessments, if accurate, offer greater consistency. Our best- 
performing models already capture much of the human ceiling, sug
gesting that larger datasets and better prompts may eventually close or 
exceed this gap. In the future, only LLM or Hybrid approaches—where 
LLMs identify and score dialogue segments for human validation, might 
even be superior to human rating. A further hypothesis is that a reliable 
distinction between high- and low-performing encounters could enable 
actionable clinician feedback, as suggested in prior work [12,19], 
though this requires testing.

4.2. Conclusion

The findings highlight the potential of LLMs in evaluating aspects of 
dialogue between clinicians and patients where existing measures exist 
that provide the basis for the development of reliable prompts. Our 
conclusions are limited to a single RCT dataset in breast cancer surgery, 
and generalisability beyond this setting remains to be established. 
Expanding datasets and refining prompts will be key. As in education, 
business, and policy, automated dialogue assessment could provide 
scalable, consistent evaluations of communication quality.

4.3. Practice implications

Generative AI LLMs could provide a way to efficiently evaluate SDM 
performance. At present, our findings, though limited by one dataset, 
primarily support their use as a feasible and scalable research tool for 
automating observer-based assessments. The possibility of extending 
these methods to provide actionable feedback to clinicians remains 
theoretical and will require further study, but our results suggest this is a 
promising direction for future work.

Abbreviations

OO5 Observer OPTION-5
LLM Large Language Model
SDM Shared Decision-Making

Table 5 
OO5 Scores: Correlation between the scores of the best-performing LLM and the correlation between the two human raters (N = 247 encounters).

Pearson Correlations of Mean OO5 Human Rater Scores Gemini-1.5-pro-002 GPT-4o

Pearson Correlation P-value Pearson Correlation P-value Pearson Correlation P-value

Item 1 (Decision Awareness) 0.54 0.02 0.15 0.018 0.17 <0.01
Item 2 (Team talk) 0.53 <0.01 0.23 <0.01 0.37 <0.01
Item 3 (Option talk) 0.80 <0.01 0.39 <0.01 0.31 <0.01
Item 4 (Preference elicitation) 0.73 <0.01 0.63 <0.01 0.63 <0.01
Item 5 (Decision talk) 0.69 <0.01 0.52 <0.01 0.50 <0.01
Overall 0.77 <0.01 0.59 <0.01 0.64 <0.01

Table 6 
Pearson correlation of best-performing LLMs’ predicted scores and average rater scores on rater score consistency between the human raters. For Spearman correlation, 
refer to Appendix Table 3 (Test dataset of 247 encounters).

Test set (247) High Rater Agreement Test subset (n ¼ 89) Low Rater Agreement test subset (n ¼ 158)

​ Pearson Correlation P-value Pearson Correlation P-value Pearson Correlation P-value
Gemini¡1.5-pro¡002 0.59 <0.01 0.69 <0.01 0.49 <0.01
GPT¡4o 0.64 <0.01 0.75 <0.01 0.53 <0.01
Rater correlation 0.77 <0.01 0.98 <0.01 0.56 <0.01

Fig. 1. Relationship between rater agreement and LLM-rater agree
ment visualized.
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GPT Generative pre-trained transformer
PaLM Pathway-based Language Model
rp Pearson Correlation
OM Observer-Based Measure
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Appendix A

Appendix Table 1 
The best-performing prompt. The prompt instructs LLM to score all-time at once, with detailed descriptions for 
each of the items. The placeholders in the prompt, for e.g., [Item 1 OO5 Definitions] are taken directly from 
[12,16]

We are interested in categorizing and evaluating doctor’s sentences in their conversation with their patients on shared 
decision making with the Observer OPTION 5 (OO5) five-item measure. We are interested in the following categories: 
The Observer OPTION 5 Measure definitions: 

Item 1 OO5: [Item 1 OO5 Definitions] 
[Item 1 score 0–4 definition and examples] 
Item 2 OO5: [Item 2 OO5 Definitions] 
[Item 2 score 0–4 definition and examples] 
Item 3 OO5: [Item 3 OO5 Definitions] 
[Item 3 score 0–4 definition and examples] 
Item 4 OO5: [Item 4 OO5 Definitions] 
[Item 4 score 0–4 definition and examples] 
Item 5 OO5: [Item 5 OO5 Definitions] 
[Item 5 score 0–4 definition and examples] 

Instructions for selecting sentence IDs: 
[Instructions for selecting sentence IDs for each of the items] 

Output data structure: 
{ 

"item 1": [ 
{ 

"sentence_id": int or list or "All" "sentence index(s) contains item 1", 
"score": int "item 1 score for the sentence id(s)", 
"explanation": str "short explanation of why the sentence is scored as such for item 1",  

}, 
…  
], 

… 
} 
Examples:-  
Example output 1: 
{ 

"item 1": [ 
{ 

"sentence_id": 8, 
"score": 3, 
"explanation": "Doctor points out the two options for breast cancer with an aim of comparing them.",  

}, 
… 

} 
Example output 2: 
{ 

(continued on next page)

S.P. Selvaraj et al.                                                                                                                                                                                                                              Patient Education and Counseling 142 (2026) 109362 

7 



Appendix Table 1 (continued )

"item 1": [{ 
"sentence_id": "All", 
"score": 0, 
"explanation": "Doctor did not point out the medical options for the patient.",  

} 
… 

} 
Instructions for output format: 

[Instructions for output format] 
Output JSON:

Appendix Table 2 
Detailed Statistics on the dataset

Measure Value

Transcript-level statistics

Mean number of lines 488

Standard deviation (lines) 334

Maximum transcript length 1675

OO5 sum scores (0–100)

Mean 54.15

Standard deviation 25.77

Median 55.0

% ≤ 25 30 %

% ≥ 75 35 %

Range 100.00

Q1 (25th percentile) 52.5

Q3 (75th percentile) 75.00

Interquartile range (IQR) 52.5

Appendix Table 3 
Spearman correlation of best-performing LLMs’ predicted scores and average rater scores on rater score consistency between the human raters. (Test dataset of 247 
encounters)

Test set (247) High Rater Agreement Test subset (n ¼ 89) Low Rater Agreement test subset (n ¼ 158)

Spearman Correlation P-value Pearson Correlation P-value Pearson Correlation P-value

Gemini¡1.5-pro¡002 0.54 < 0.01 0.64 < 0.01 0.45 < 0.01
GPT¡4o 0.60 < 0.01 0.75 < 0.01 0.50 < 0.01
Rater correlation 0.74 < 0.01 0.97 < 0.01 0.54 < 0.01

Appendix B. Bias Detection

B.1 Methods
To complement correlation and ICC analyses, we conducted Bland–Altman analyses to examine systematic and proportional bias between raters 

and models. For overall Observer OPTION-5 scores (0–4 scale), we calculated mean differences (bias), 95 % limits of agreement, and tested for 
proportional bias using linear regression of differences against means. We applied this approach both to (1) the best-performing LLM compared to the 
human reference (mean of two raters) and (2) human Rater 1 compared to Rater 2.

B.2 Results
The Bland–Altman analysis revealed that the best-performing LLM (GPT-4o) exhibited a systematic positive bias of + 0.25 points across all five 

OO5 items (on the 0–4 scale, p < 0.01). Proportional bias was also present, with model deviations increasing at higher OO5 scores.
Comparisons between human Rater 1 and Rater 2 also showed a systematic bias of + 0.10 points (p < 0.01), alongside evidence of proportional 

bias. Given the restricted 0–4 scoring range, these biases represent approximately 6 % (LLM vs. humans) and 2.5 % (human vs. human) of the total 
item range.

B.3 Discussion
These analyses indicate that the LLM’s systematic bias, while statistically significant, is modest in absolute terms and falls within the general 

magnitude of variability observed between trained human raters. Prior studies of OPTION-5 have similarly reported non-negligible inter-rater 
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variability, with mean rater differences of ≈ 0.3–0.4 points on the 0–4 scale and ICCs in the 0.6–0.7 range [19,53]. This suggests that both systematic 
and proportional bias are features of human-based OO5 scoring itself. In this context, the LLM’s performance can be considered comparable to human 
variability, although future work may focus on calibration strategies to further reduce fixed and proportional bias.
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Wu, J. Wu, Y. Wu, S.M. Xie, M. Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang, 
X. Zhang, Y. Zhang, L. Zheng, K. Zhou, P. Liang, On the Opportunities and Risks of 
Foundation Models, arXiv [cs.LG] (2021). 〈http://arxiv.org/abs/2108.07258〉.

[39] Jin D, Pan E, Oufattole N, Weng W-H, Fang H, Szolovits P. What disease does this 
patient have? A Large-Scale open domain question answering dataset from medical 
exams. NATO Adv Sci Inst Ser E Appl Sci 2021;11:6421.

S.P. Selvaraj et al.                                                                                                                                                                                                                              Patient Education and Counseling 142 (2026) 109362 

9 

http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref1
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref1
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref1
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref2
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref2
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref3
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref3
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref3
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref3
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref3
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref4
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref4
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref4
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref5
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref5
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref6
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref6
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref6
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref6
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref7
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref7
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref8
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref8
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref8
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref9
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref9
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref9
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref9
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref10
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref10
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref10
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref11
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref11
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref11
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref12
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref12
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref12
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref12
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref12
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref13
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref13
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref13
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref14
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref14
http://preprints.jmir.org/preprint/57790
http://preprints.jmir.org/preprint/57790
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref16
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref16
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref16
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref16
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref17
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref17
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref17
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref18
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref18
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref19
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref19
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref19
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref19
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref20
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref20
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref20
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref21
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref21
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref21
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref21
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref22
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref22
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref22
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref23
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref23
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref23
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref24
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref24
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref25
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref25
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref25
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref26
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref26
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref27
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref27
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref27
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref27
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref28
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref28
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref28
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref29
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref29
http://arxiv.org/abs/2302.09419
http://arxiv.org/abs/2305.10403
http://arxiv.org/abs/2305.10403
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref30
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref30
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref31
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref31
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref31
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref31
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref31
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref31
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref32
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref32
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref32
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref32
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref32
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref32
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref32
http://arxiv.org/abs/2108.07258
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref33
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref33
http://refhub.elsevier.com/S0738-3991(25)00729-3/sbref33


[40] Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Barham P, 
Chung HW, Sutton C, Gehrmann S. Others, palm: scaling language modeling with 
pathways. J Mach Learn Res 2023;24:1–113.

[41] Banerjee J, Taroni JN, Allaway RJ, Prasad DV, Guinney J, Greene C. Machine 
learning in rare disease. Nat Methods 2023;20:803–14.

[42] Patel D, Konam S, Prabhakar S. Weakly supervised medication regimen extraction 
from medical conversations. Proceedings of the 3rd Clinical Natural Language 
Processing Workshop. Association for Computational Linguistics; 2020. p. 178–93.

[43] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding, in: J. Burstein, C. Doran, 
T. Solorio (Eds.), Proceedings of the 2019 Conference of the North American 
Chapter of the Association for Computational Linguistics: Human Language 
Technologies, Volume 1 (Long and Short Papers), Association for Computational 
Linguistics, Minneapolis, Minnesota, 2019: pp. 4171–4186..

[44] Lee J, Yoon W, Kim S, Kim D, So CH, Kang J. BioBERT: a pre-trained biomedical 
language representation model for biomedical text mining. Bioinformatics 36 
2020;36:1234–40.

[45] Raffel C, Shazeer N, Robert A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ. 
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. 
J. Mach. Learn. Res. 2020;21:1–67.

[46] Selvaraj SP, Konam S. Medication regimen extraction from medical conversations. 
Explain AI Healthc Med 2020. 〈https://link.springer.com/chapter/10.1007/978 
-3-030-53352-6_18〉.

[47] Rasmy L, Xiang Y, Xie Z, Tao C, Zhi D. Med-BERT: pretrained contextualized 
embeddings on large-scale structured electronic health records for disease 
prediction. NPJ Digit Med 2021;4:86.

[48] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. 
Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C.C. Ferrer, M. Chen, G. 
Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. 
Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, 
I. Kloumann, A. Korenev, P.S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, 
Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, 
J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E.M. Smith, R. 
Subramanian, X.E. Tan, B. Tang, R. Taylor, A. Williams, J.X. Kuan, P. Xu, Z. Yan, I. 
Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. 
Edunov, T. Scialom, Llama 2: Open Foundation and Fine-Tuned Chat Models, arXiv 
[cs.CL] (2023). https://doi.org/10.48550/arXiv.2307.09288.

[49] Jiang AQ, Sablayrolles A, Mensch A, Bamford C, Chaplot DS, de las Casas D, 
Bressand F, Lengyel G, Lample G, Saulnier L, Lavaud LR, Lachaux M-A, Stock P, 
Scao TL, Lavril T, Wang T, Lacroix T, Sayed WE. Arxiv [cs.CL. Mistral 7B 2023. 
〈http://arxiv.org/abs/2310.06825〉.

[50] Durand M-A, Yen RW, O’Malley AJ, Schubbe D, Politi MC, Saunders CH, Dhage S, 
Rosenkranz K, Margenthaler J, Tosteson ANA, Crayton E, Jackson S, Bradley A, 
Walling L, Marx CM, Volk RJ, Sepucha K, Ozanne E, Percac-Lima S, Bergin E, 
Goodwin C, Miller C, Harris C, Barth Jr RJ, Aft R, Feldman S, Cyr AE, Angeles CV, 
Jiang S, Elwyn G. What matters most: randomized controlled trial of breast cancer 
surgery conversation aids across socioeconomic strata. Cancer 2021;127:422–36.

[51] Liu NF, Lin K, Hewitt J, Paranjape A, Bevilacqua M, Petroni F, Liang P. Lost in the 
middle: how language models use long contexts. Trans Assoc Comput Linguist 
2024;12:157–73.

[52] Wei J, Wang X, Schuurmans D, Bosma M, Xia F, Chi E, Le QV, Zhou D. Others, 
Chain-of-thought prompting elicits reasoning in large language models. Adv Neural 
Inf Process Syst 2022;35:24824–37.

[53] Bobak CA, Barr PJ, Malley O, Ubel AJ, Meurer PA, Montori WJ, Hayward VM, 
Krumholz RA, Spertus HM. J.A. Holmes-rovner, agreement between physician and 
observer OPTION(5) scores in the video recording of clinical encounters. Patient 
Educ Couns 2018;101:1601–7.

[54] Stortenbeker I, Stommel W, Van Der Vleuten C, Van Dulmen S, Essers G, Van 
Weert J, Pieterse AH. Developing a codebook for linguistic analysis of shared 
decision making in oncology: lessons learned. Patient Educ Couns 2022;105: 
3829–36.

[55] Mandhana D, Beattie A, Mcguire A, Grande SW, Joseph-Williams N, Cribb A, 
Entwistle V, Elwyn G. Unhurried conversations: development and evaluation of a 
novel measure of shared decision making. Patient Educ Couns 2024;107:1521–9.

[56] Scholl I, Loon MKoelewijn-van, Sepucha K, Elwyn G, Légaré F, Härter M, 
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